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Surface Integral Formulation for Calculating
Conductor and Dielectric Losses of
Various Transmission Structures

Tanmoy Roy, Tapan K. Sarkar, Fellow, IEEE, and Madhavan Swaminathan, Member, IEEE

Abstract—The power-loss methed, along with a surface integral
formulation, has been used to compute the attenuation constant in
microstrip and coplanar structures. This method can be used for
the analysis of both open and closed structures. Using the surface
equivalence principle, the waveguide walls are replaced by equiv-
alent electric surface currents and dielectric surfaces are replaced
by equivalent electric and magnetic surface currents. Enforcing
the appropriate boundary condition, and E-field integral equation
(EFIE) is developed for these currents. Method of moments
with pulse expansion and point matching testing procedure is
used to transform the integral equation into a matrix one. The
relationship between the propagation constant and frequency
is found from the minimum eigenvalue of the moment matrix.
The eigenvector pertaining to the minimum eigenvalue gives the
unknown electric and magnetic surface currents.

I. INTRODUCTION

HE WIDESPREAD use of MIC’s in recent years has

caused rapid progress in its theory and technology. The
very first transmission line used in MIC was, indeed, mi-
crostrip laid on the dielectric substrate, and then other trans-
mission lines such as slot line, suspended microstrip, and so
on, were introduced and improved.

Initially, the analysis for this class of transmission line
was invariably a quasi-TEM approximation, except for slot
line where Cohn [14] introduced a frequency-dependent solu-
tion because of its different nature. Although a quasi-TEM
solution at low frequency can yield satisfactory results, at
high frequency its weakness becomes apparent. To feature
the frequency dependence of the lines, one must consider a
hybrid mode analysis. This dispersion analysis, a hybrid mode
analysis, is a generalization of the TE and TM modes studied
by Swaminathan er al. [1]-[3]. The dominant mode in most of
the waveguides and transmission lines used in microwave and
MIC’s are hybrid in nature. Since these modes have an electric
and magnetic field in the direction of wave propagation, they
cannot be fully described in terms of static capacitances and
inductances. Hence, one has to introduce time vatying electric
and magnetic fields and solve the wave equation completely.

A method based on a surface integral formulation has been
used for the computation of hybrid modes propagating in
shielded microstrip lines and image lines. This formulation
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is based on the surface equivalence principle whereby the
structure is modeled by equivalent surface currents that now
represent the sources producing fields in a homogeneous
medium. Hence, this work is an extension of [2].

Using the surface equivalence principle, the conducting
walls and strips are replaced by equivalent electric surface
currents whereas the dielectric boundaries are replaced by
equivalent electric and magnetic surface currents radiating
in free space. Enforcing the appropriate boundary condition
an E-field integral equation (EFIE) is developed for these
currents. Using method of moments [5] the integral equation is
transformed into a matrix equation. The pulse basis with point
matching technique is used for the transformation. Now to
find the relation between frequency and propagation constant,
the minimum eigenvalue of the moment matrix is plotted for
whole range of values of propagation constant at particular
frequency.

Once the relationship between the propagation constant and
frequency is known, the fields inside the structure and on the
surface of the conductors are calculated using the eigenvector
pertaining to the minimum eigenvalue. The attenuation con-
stant for various guides and structures are calculated and it
has been found that our results are in good agreement with
published data. This work is an extension of [3].

II. THEORY

The necessary form of Maxwell’s equations are given by [2]

.vl x Hy, Q)]

——Jﬂ—z X V;x FE,;— %V; X H,. (2
K3 (2

Equations (1) and (2) represent the relation between the
electric field and magnetic field for a wave propagating along
the z-direction in a medium with material properties {(y;, €;).
An e7#% dependence has been assumed for the wave along
the axial direction.

The source field relation for a dielectric loaded waveguide
supporting a T M, or a TE, mode have already been given in
[2], where subscript z denotes z-directed propagation. Since
the hybrid mode is just a superposition of the TM, and TE,
modes, the source field relation for a hybrid mode propagating
in a dielectric loaded waveguide is just an extension of the
derivations given in [2].
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For a hybrid mode H, # 0 and E, # 0. The electric field
produced by electric sources and magnetic sources supporting
a hybrid mode propagating along the axial direction in a
homogeneous medium with material properties (p;, €;) is

— k2 _ 32_ _
E,,=— ﬂAzi_leFli“ 3)
Jweq
- ﬂ = 4 i s
Elz - zt wei(kf — Igz)vl¢l2
"""“’ (8 — B A+ Vign]
+Jﬁ_><Fli—Vl><in~ €]
In the above equations
A= jéjzc:( K2 B2R) dl
j{MlG - B2R)dl'

with the electric current J, and magnetic current M z-directed
and transversely directed (represented by subscript ), respec-

tively.
Ay = %IG( — B2R) dl’

bu = fﬁﬁ -le(\/kg — B2R)dl'
F fM G( ﬂ?R) dl’

with the electric current J; and magnetic current M, trans-
versely directed and z-directed, respectively. The Green’s

function G(/k? — B2R) is given by

GGk -pR) = SHP G- )

where Hé2) is the zeroth order Hankel function of the second
kind and R is the distance between the source and field
co-ordinates given by R = +/(z —2)2+ (y —y')%. The
primed variables represent the source and unprimed variables
represent the field.

The Fig. 1 shows a dielectric loaded waveguide where C,
and Cj; denote the contour of the conductor and dielectric,
respectively, whereas S, and S; denote the surface of the
conductor and dielectric, respectively. Using the equivalence
principle and the continuity of tangential electric and magnetic
fields on the surface Sy (Fig. 2), the electric field integral
equations are

Te X _E_o(zc, zd, —%—d) =0 on 52_ . .
Tig X Fo(Jey Ta, Mg)=0 on Sy [ medium(so, €o)

Tig x BE1(=Jg, —Mg) =0 on S;in mediom{pg, €1). (5)

In the above equations, the currents J,, J4 and M4 are both
axially directed and transversely directed since a hybrid mode
is propagating in the waveguide.

(1osE0) (0,0) free space \

(“0 ’ e0) cd Sc L’ X
(e

o — dielectric

Sy _
(EosHo)
C. l
I_ld perfect conductor

Fig. 1. Dielectric loaded waveguide.

Method of moments is used to reduce the (5) into a matrix
equation. Since a hybrid mode is a coupling between the T M,
and T'F, modes, a total of 2(n+2m) unknowns are necessary
to analyze the same waveguide supporting a hybrid mode,
since both axially directed and transversely directed electric
and magnetic currents support the hybrid mode. n and m
denote the number of subsections on conductor and dielectric
surfaces, respectively. The expansion functions are given as,

n
ch ZIsz
=1
n+m
Jaz= Y IiJi
i=n-+1
n+2m
> LM
1=n+m-+1
2n+2m
> 1
1=n+2m+1
2n+3Im
Ju= )
i=2n+42m-+1
2(n+2m)
Mg, = IL;M;. (6)
i=2n+3m-+1

Mg =
7cl =

LJ;

The weighting functions are given as

We=>) Wy;
k=1

n+m

Z Wi. )

k=n+1

Expanding the surface currents J, Jq, Mg in terms of
expansion functions (6) and testing equations (5) with the set
of weighting functions (7), the electric field integral equations
reduces into the matrix form

1Z]1] = [0 ®)
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Fig. 2. (a) Equivalence for medum 0. (b) Equivalence for medium 1.
where

_ | Zram 0 0 Z

and [I] is a 2(n + 2m) current vector with the first (n + 2mn)
elements representing the current coefficients necessary to
produce the axial component of the electric field and the
next (n + 2m) elements representing the current coefficients
necessary to produce the transverse component of the electric
field.

The sub-matrices [Zra¢] and [Zrg] are (n+2m) X (n+2m)
matrices with elements given in [2]. The sub-matrix [Z],]
ia a (n+ 2m) X (n + 2m). The elements of this matrix

Pi(I’- 1.4)
4
o I
liq I
l — lk__.l'*‘lk
(1= 1) k 2
A
1141
kT k41
lk+ — 9
l l ; I’
ha ek
Fig. 3 Patching details.

represent the z-component of the electric field produced by
the transverse electric currents (J.;) flowing on the walls
of the conductors. Applying the equivalence principle to (4)
and using the following expansion and weighting functions
(Fig. 3),

T, =Pl —li_)

1 0<l —lg <1y~
o - < 1—1 > 0 i-1
where F;(! li-1) = {() elsewhere ®
Wi = 6(l — L )ALyl
1 I=1-
where §(1 — [;-) = {0 otherwise (10)
the matrix [Z],] can be represented in the form
Zy Zip 0
[Zi] = |21 Z3y 0
0 Zip O
where
VR PPy /ll B
_ap BV P2 i R — -
A e LZII - {, = (1 —1-)
P - li—l)Hl(z)(\/;”"g_-ﬂzR) I’
k’zw 5 ntm Lyry P
RN Iz/ L )80 1)
4ch0 i=n+1 L "
. Pi(l/ = ll)H]Q)(\/l‘/é—hﬂ;R) dll

k=1,2,...,n
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The submatrix [Z},,,] is also a (n + 2m) X (n + 2m) matrix
that represents the transverse component of the electric field
produced by the axial electric currents (J..) flowing on the
surface of the conductors and transverse magnetic currents
(M.;) flowing on the surface of the dielectric. Applying
equivalence principle to (6), the submatrix [Z},] can be
represented in the form

Zh Ziy 2
[Zém] = Z§/1 Zé’z Zéls
0 Zy Zy
where
21y 21y Zis][]
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The submatrix [Z} ] is also a (n + 2m) X (n 4+ 2m) matrix
with elements representing the transverse component of the
electric field produced by transverse electric currents (J;)
flowing on the conductors. This submatrix is of the form

Z/// Z/// O
[ZTE] Z/// ZI/I 0
0 Z//I 0
where
[Z/” ZIII 0] [I]
I (6(1 =)
2 2 Z / k
4(4)60 k ,8 z 1 (L -
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The T',(I')’s are defined as in Fig. 4.

Based on the above equations, the electric field integral
equation can be reduced to a matrix equation at a certain
frequency w and fixed propagation constant (3. This matrix
equation now represents a hybrid mode propagating in the
guiding structure, which can be solved for the unknown
expansion coefficients.

To find out the dispersion curve is to obtain a relation
between propagation constant () and angular frequency (w).
The wavenumber ko appears as an argument in the matrix
equation (8). For a non-trivial solution of I, the moment matrix
[Z] has to be singular [1]. Therefore, we can say

det[Z] = 0. (11)
Equation (8) can be written as
[Z][1] = Amin (] (12)

where Ay is the minimum eigenvalue of the matrix [Z] and
[I] is the corresponding eigenvector. Assuming w is fixed, then
the propagation constant 3 at which A, is the smallest one
gives the relation between ( and w. As the range of 3 is
known (0 < 8 < ko; ko < 8 < Vérko), the relationship can
be found out by a scanning procedure. The moment matrix
[Z] is complex, the corresponding eigenvalues are complex
also. To find out the w — G relation the absolute value of the
eigenvalue is used in the algorithm.

III. ELECTROMAGNETIC FIELD DISTRIBUTIONS

The eigenvector obtained corresponding to the minimum
eigenvalue (A\min) represents the equivalent current existing on
the surface of the guiding structure. These equivalent current
coefficients I produces exact field inside and on the surface

of the guiding structure. This vector can therefore be used to
calculate the fields, and hence the losses, in the structure.

The power-loss method has been used to calculate attenua-
tion constants in the structure. The assumptions of conducting
walls being perfect conductors and the dielectric medium
being lossless are valid up to microwave frequencies. But
in millimeter wave frequencies, the finite conductivity of
the walls should be taken into account while calculating the
field components. As long as the losses are small at high
frequencies, the power-loss method can be used [6]. In this
approach, it is assumed that the finite conductivity of the walls
has only a small effect on the field configuration within the
structure. The magnetic field tangential to the conducting wall
of infinite conductivity is the same when the conducting wall
is replaced with a conductor of finite conductivity [3]. If the
structure is open, i.e., it is not surrounded by a conducting wall,
the field at the surface of the di€lectric bodies are not zero. Part
of the guided energy lies outside of the cross-section of the
dielectric body. But in the case of closed structure, the whole
guided energy remains within the boundary of the conducting
walls. If the external medium (e.g., air) in the case of open
structure or any other medium except the dielectrics in closed
structures has negligible loss, the power-loss method can be
applied to calculate dielectric losses.

Using the power-loss method [6], the attenuation constant
for conductor losses can be defined as
Py,
2Py

whereas the attenuation constant for dielectric losses can be
defined by

(13)

Ko =

Pp

=2 4
@ =op 14)
where
1 g
P = 5Rs/|Hm|2dz (15)
1/ — .
PT:§//9%(ExH)-zds (16)
S
1 _
Pp = —wetané// |E)? ds (17)
2 Sdret

In the above equations, Py, is the power lost per unit length
over the conducting bodies, Pr is the power transmitted, Pp
is the power lost in the dielectric bodies, Hy,,, is the magnetic
field tangential to the conducting surfaces for the lossless
case. I. is the surface resistance of the conducting bodies,
M(X) is the real component of X, Sy, is the area covered
by dielectric, § is the complete cross section of the guiding
structure, tan 6 is the loss tangent of the material, ¢ is the
dielectric constant of the dielectric, E is the electric field inside
the structure, and 7 is the complex conjugate of the magnetic
field existing inside the structure. The contour C, around which
the conducting loss has been calculated are the contour of all
the conducting bodies present in the guiding structure. The
surface resistance R, at any frequency w is given by

Wio

R, =
20
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where pg is the free space permeability and o is the conduc-
tivity of the conductivity of the conducting bodies.

The term (Ex H )-z in (16) can be expressed in rectangular
coordinate system, and after little manipulation, (16) can be
written as

1 " "
Pr= 5//§m(ExHy - E,H)ds (18)
where x and y subscripts represent corresponding field quan-
tities in = and y directions, respectively. From Maxwell’s
equations, z-directed magnetic field H, and y-directed mag-
netic field H, can be expressed as

Ho= L [3E + jBE, ] (19)
jwp
1 [9B,

Hy = | o] 20

Replacing (19) and (20) in (18) and with a little algebra we get

r=3 ) [ R + P

1 (8B, . OE;
-—(Z= 2 21
jwu(am dy E)]ds @b

The various components of the electric and magnetic fields
produced by a hybrid mode propagating in the guiding struc-
ture can be calculated from the eigenvector [I], corresponding
to the minimum eigenvalue A;,, via (3), (4), (19), and (20).
To calculate OF,/0x (20), the partial w.r.t. = has taken for
(3) and expanding equivalent electric current (J,, J;) and
magnetic current (M;), and making some simple modification,
it becomes

8Ez=A+B+C 22)

ox
where

(k7 — B°) /K7 = B°
A= ‘
4k,
ZI H<2> p(y/ k2 — B2R) dl

and
B=

”‘%JEEﬁﬂ;{ ﬁ?ﬂmW%—@m
— k2 - 522
CHP (Jk2 —ﬂ2R)}dl’

7
Z (1, xR)

*

and

_ JnB
¢= [_ 4k; ki =52
-Z%Ld{(mHH®W%—mm
— /K2 = g2 R)HY (\/k? — B°R) }dl}

The subscript ¢ denotes the ith medium, which can be either
conductor or a dielectric. Z; is the tangential unit vector on
the jth subsection on the surface of conductor or dielectric,
which can be expressed as
7; = Zcos 6 + gsinf’.

R is defined as R = #(x — 2') + §(y —y'), where & and § are
unit vectors along = and y directions, respectively. Here I; is
the jth component of the eigenvector [I]. While calculating
field in the medium air (free space), our field point lies in
the medium (¢ = 0), and according to equivalence principle
(Fig. 2(a)), the fields in that region can be evaluated through
Jezy Jaz, Mg, and Jg. So, the subscript § in the summation
should run through 1 to 2n + 2m. But fields in the medium
(¢ = 1) are evaluated through —J; only (Fig. 2(b)). So, the j
in this case should run through n 4 2m to 2n+42m. Al is the
subsection of the conducting or dielectric body along which
integration of kernel is computed. Similarly dF,./0y can be
expressed through J,, J;, and M; and is given as

O D+ E+F 23)
0y
where
ni(kZ — B%)V/k? - B2
D=
4k;
3, k2 — 32R)dl'
7
and
E =

372 o
SRR [ - SR at -
g )
R)

%

_ k?_ﬂ2y

-%WV@—@m}M

and

:[ Jmﬂ\/——
27/1{‘$w”ﬁﬁvw—wm

~«%—w%§ﬂ}®%%«@—mm}w

H §2) and HéQ) are Hankel functions of 2nd kind of order
1 and 2, respectively. k; = w,/i:€; is the wave number of
the medium ¢. 7; = +/p;/€; is the characteristic impedance
of medium ¢. Equation (4) can be rewritten in more compact

*




182 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. I, JANUARY 1995

form to give transverse components of electric fields as
b= SR
Ey=——V1A,; +jpzZ x F,
Wet

— 1 — — —
— jwp; {Au + Fvﬂﬁll} -VixF, (24

2

1
:G—I—H—jwui[f—l—FJJ—K 25)
where
_ jﬁnz 1.2 2 E (2) 2 g2 '
6= L0\ e - EJIIJ/NJRHl (/2 - Ry i
and
B / ANy @, ] /
H==-1T zZx[.)H, k?—ﬂzR)dl
42]3 J Al]( ]) 0 (
and
1 2) ,
I=— 1/ 1P (/K2 — B2R) dl
4]%: J Al] 0 ( )
and
[l2 — /32 / R @)
J=—2—""N7 L,(Hh=H \/kf — B2R)dl
4] ; J AlJ ( )R 1 ( )
and
. \/k;z —62 / (EXR) (2)
K=-2Y* " N'T ~ " “H \/kf—ﬂQR dr
4.] ; 7 Al R 1 ( )

In the above equations, the subscript ¢ denotes the ith
medium. If the fields to be calculated at a point lying
in the medium : = 0 then by equivalence principle
(Fig. 2(a)), the fields in that region can be evaluated through
Jozy Joty Sz Jai, Mg, and My Since G depends upon z-
directed electric currents, the variable j in summation should
run through 1 to (n + m). H depends upon My only. The
variable j in summation runs from (n +m + 1) to (n + 2m).
Since [ and J both depend upon J., and Jy only. the
summation variable j goes from (n + 2m + 1) to (2n + 3m).
In the expression of K variable j in summation goes from
(2n 4+ 3m + 1) to 2(n + 2m), because it only depends on
My.. But if the field point lies inside the medium (i = 1),
according to equivalence principle (Fig. 2(b)), the fields can
be evaluated through —J;,, — My, —J4, and —Myg,. In this
case the summation in G goes from n+ 1 to n +m, in H
it goes from n+m 4+ 1 to n + 2m, in I and J it goes from
n+2m+1 to 2n+3m, whereas in K it goes from 2n+3m+1
to 2(n + 2m). Al; is the subsection of the conducting or
dielectric body atong which integration of kernel is computed.

The tangential component of the magnetic field on the

surface of the conductor is given by the electric currents [3],
Ftan = —7 X j (26)

where J is given by the eigenvector and 7 is the unit outward
normal vector to the surface of the conductor.
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Fig. 5. Shielded microstrip line.
3 T T T T
[ < <
25 i
2 r 4
B
- 1 5 o -
ko
1k
05
0 -+ L . e 4 .

10 12 18 20

14 16
freq. (GHz)

Fig. 6. Dispersion curve of shielded microstrip line.

IV. RESULTS

A. Shielded Microstrip Line

Fig. 5 shows a shielded microstrip line that is made up
of an outer conducting box, an inner dielectric body, and a
conducting strip on top of the dielectric. Since the conductor
fully covers the dielectric and the conducting strip, a wave
propagating in this structure does not radiate any fields into
the space outside the box. A relation between propagation
constant 5 and the free space wavenumber kg can be found
out by solving (8).

At a high frequency of operation, existence of the outer
conducting body produces propagation of higher-order modes.
A total of 130 subsections are used to model the structure
shown in Fig. 5. Twenty four subsections are used to model the
outside conducting box and five to model the inside conducting
strip, whereas 36 subsections are used to model the dielectric.
Altogether, 65 subsections are used for unknowns J,, Jy., and
My;. Another 65 subsections are used for unknowns J;, Jy;,
and My.. The surface integral formulation is used to find the
0 — ko relation for the structure given in Fig. 5. The first four
hybrid modes are given in Fig. 6. The solid lines represent
the computed data using this method, whereas the points with
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Fig. 7. Shielded microstrip line.
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Fig. 8. Conductor losses of shielded microstrip for different linewidth.

boxes and pluses represent the values from [16], [10], which
agree well with our computed data.

Fig. 7 shows the same shiclded microstrip line with different
dimensions. Conductor and dielectric losses are calculated for
the structure with different 2w /h ratio and are shown in Fig. 8
and Fig. 9, respectively. The frequency of operation is chosen
to be 1 GHz, and the 3 — kg relationship is found from the
dominant mode characteristics. The conductivity of the strip
and the outer conducting wall is taken to be 1/3 x 108mho-m.
The solid line represents the computed data using our method,
whereas the points with boxes represent the values obtained
from [10]. As can be seen from Fig. 11, there is a certain
discrepancy when 2w/h is less than 1.5. The losses in [10]
are dependent on the order of solution chosen. But as the ratio
2w/h increases the losses are slightly dependent on the order
of solution. Since the surface integral formulation does not
depend upon the order of the solution, the result given by this
method is more accurate.

The loss tangent (tané) for the dielectric is taken to be
2 x 1074, The computed data agrees well with the available
data [10]. In this case, the losses given in [10] do not vary
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Fig. 9. Dielectric losses of shielded microstrip for different linewidth.
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with the order of solution, which can be attributed for the
better agreement in this case.

B. Coupled Image Lines

Fig. 10 shows a waveguide made up of an outer conductor
and two inner dielectric squares of equal dimension and same
material properties separated by a distance 2 mm.

The surface integral formulation is used to obtain the
propagation curve for the above mentioned structure. A total
of 188 unknowns are used to obtain the 5 — w relation, of
which 94 are used for axial conductor electric surface current
J., axial dielectric electric surface current J4., and transverse
dielectric magnetic surface current My;. The other 94 represent
transverse electric surface current J.;, transverse dielectric
electric surface current Jy, and axial dielectric magnetic
surface current My,. The § — w relation for first two hybrid
modes are shown in Fig. 11. The solid lines represent the
results found out by this method, whereas the points by boxes
and pluses represent the results from a commercial FEM code
(HFSS). Though there is good agreement for the 2nd mode,
there is slight discrepancy for the first mode.

C. Image Line

Fig. 12 shows an image line that consists of a rectangular
dielectric slab backed by a conducting plane. The image line
analysis done in [6], assumes the conducting plane to be
infinite. Though the above assumption makes the analysis
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simple, the solution can not be exact when the conducting
plane of finite length. In our example, the conducting plane
has taken to be finite and of length 6a. whereas the dielectric
has the dimension 2a as one of its sides.

The surface integral formulation is used to find the disper-
sion curve for the image line shown in Fig. 13. A total of 120
subsections are used to model the structure. The 20 unknowns
are used for each type of surface currents, which are axial
conductor electric current J..., axial dielectric electric current
Jq., transverse dielectric magnetic current My, transverse
conductor electric current J,; (in this case only J,...), transverse
dielectric electric current Jy, and axial dielectric magnetic
current M.
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Fig. 14. Conductor loss of an image line.
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The dispersion curve for the image line for first two hybrid
modes, giving the ratio of propagation constant 3 to the
free space wavenumber kg as a function of normalized guide
dimension B is shown in Fig. 14. The normalized guide
dimension B is given by

_4b

B=2
Ao

Ve, — 1.

The solid lines represents the results computed by this method
whereas the boxes and pluses represent the result from [6].
The agreement of our result with [6] is good.

The attenuation constants. both for conductor and dielectric
are plotted in Fig. 15, respectively. The attenuation constants
has been calculated for the first mode only. The attenuation
constant for the conductor is given by «./R, to normalized
guide dimension B. The solid line is the result computed by
this method, whereas the points by boxes represent the results
from [6]. The results agree well with the results given by [6].

The loss tangent for the dielectric tan é is assumed to be
0.001, which satisfy our criteria of low lossy material so
that power-loss method can be used to calculate cg. Fig. 16
shows attenuation constant for dielectric o, to normalized
guide dimension B. The results compared with [6] gives good
agreement.
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V. SUMMARY AND CONCLUSION

The power-loss method, coupled with the surface integral
formulation, has been used to compute attenuation constant
for both conductor and dielectric losses for hybrid modes in
open and closed structures. A simple point matching testing
procedure with pulse expansion functions has been chosen to
transform the integral equation into a matrix one. After getting
the relation between the propagation constant and frequency,
the fields inside or on the surface of the conductors are
calculated. Using the field quantities, the losses have been
found out. The losses calculated are valid for hybrid modes.
The computed results show good agreement with available
results.

The surface integral method did not produce any spurious
modes for the region 0 < 3 < ko. But the presence of spurious
modes is observed in the region kg < @ < ko./€,. These
spurious modes can be identified looking at the eigenvector
corresponding to the minimum eigenvalue. A mode can be
identified as spurious using two criteria described in [2].
It is also noticed that the occurrence of spurious modes is
prominent when the dielectric used in the analysis is thin
(example A).

The surface integral method along with power-loss method
is a very useful technique that can be used for treating complex
structures to compute conducting and dielectric losses.
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