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Abstract-The power-loss method, along with a surface integral
formulation, has been used to compute the attenuation constant in

microstrip and coplanar structures. This method can be used for

the analysis of both open and closed structures. Using the surface
equivalence principle, the waveguide walls are replaced by equiv-
alent electric surface currents and dielectric surfaces are replaced
by equivalent electric and magnetic surface currents. Enforcing
the appropriate boundary condition, and E-field integral equation
(EFIE) is developed for these currents. Method of moments

with pulse expansion and point matching testing procedure is

used to transform the integral equation into a matrix one. The
relationship between the propagation constant and frequency
is found from the minimum eigenvalue of the moment matrix.

The eigenvector pertaining to the minimum eigenvalue gives the

unknown electric and magnetic surface currents.

I. INTRODUCTION

T HE WIDESPREAD use of MIC’s in recent years has

caused rapid progress in its theory and technology. The

very first transmission line used in MIC was, indeed, mi-

crostrip laid on the dielectric substrate, and then other trans-

mission lines such as slot line, suspended microstrip, and so

on, were introduced and improved.

Initially, the analysis for this class of transmission line

was invariably a quasi-TEM approximation, except for slot

line where Cohn [14] introduced a frequency-dependent solu-

tion because of its different nature. Although a quasi-TEM

solution at low frequency can yield satisfactory results, at

high frequency its weakness becomes apparent. To feature

the frequency dependence of the lines, one must consider a

hybrid mode analysis. This dispersion analysis, a hybrid mode

analysis, is a generalization of the TE and TM modes studied

by Swaminathan et al. [ 1]–[3]. The dominant mode in most of

the waveguides and transmission lines used in microwave and

MIC’s are hybrid in nature. Since these modes have an electric

and magnetic field in the direction of wave propagation, they

cannot be fully described in terms of static capacitances and
inductances. Hence, one has to introduce time varying electric

and magnetic fields and solve the wave equation completely.

A method based on a surface integral formulation has been

used for the computation of hybrid modes propagating in

shielded microstrip lines and image lines. This formulation
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is based on the surface equivalence principle whereby the

structure is modeled by equivalent surface currents that now

represent the sources producing fields in a homogeneous

medium. Hence, this work is an extension of [2].

Using the surface equivalence principle, the conducting

walls and strips are replaced by equivalent electric surface

currents whereas the dielectric boundaries are replaced by

equivalent electric and magnetic surface currents radiating

in free space. Enforcing the appropriate boundary condition

an E-field integral equation (EFIE) is developed for these

currents. Using method of moments [5] the integral equation is

transformed into a matrix equation. The pulse basis with point

matching technique is used for the transformation. Now to

find the relation between frequency and propagation constant,

the minimum eigenvalue of the moment matrix is plotted for

whole range of values of propagation constant at particular

frequency.

Once the relationship between the propagation constant and

frequency is known, the fields inside the structure and on the

surface of the conductors are calculated using the eigenvector

pertaining to the minimum eigenvalue. The attenuation con-

stant for various guides and structures are calculated and it

has been found that our results are in good agreement with

published data. This work is au extension of [3].

II. THEORY

The necessay form of Maxwell’s equations are given by [2]

(1)

Equations (1) and (2) represent the relation between the

electric field and magnetic field for a wave propagating along

the z-direction in a medium with material properties (p;, Ci).

An e–~fl’ dependence has been assumed for the wave along

the axial direction.

The source field relation for a dielectric loaded waveguide

supporting a Till, or a TEZ mode have already been given in

[2], where subscript z denotes z-directed propagation. Since

the hybrid mode is just a superposition of the TM, and TEZ

modes, the source field relation for a hybrid mode propagating

in a dielectric loaded waveguide is just an extension of the

derivations given in [2].
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For a hybrid mode ~, # O and ~, # O. The electric field

produced by electric sources and magnetic sources supporting

a hybrid mode propagating along the axial direction in a

homogeneous medium with material properties (,w, G) is

In ,the above equations

~l=j=d=-1’
with the electric current ~= and magnetic current ~1 z-directed

and transversely directed (represented by subscript 1), respec-

tively.

Zli =

q$ti =

Fzi =

pw==d”

with the electric current ~1 and magnetic current ~z trans-

versely directed and z-directed, respectively. The Green’s

function G( ~W”R) is given by

G(~~R) = &~2) (~=R)

‘2) is the zeroth order Hankel function of the secondwhere Ho
kind and R is the distance between the source and field

co-ordinates given by R = ~(z - ~’)’+ (y - y’)’. The

primed variables represent the source and unprimed variables

represent the field.

The Fig. 1 shows a dielectric loaded waveguide where Cc

and cd denote the contour of the conductor and dielectric,

respectively, whereas SC and sd denote the surface of the

conductor and dielectric, respectively. Using the equivalence

principle and the continuity of tangential electric and magnetic

fields on the surface sd (Fig. 2), the electric field integral

equations are

fid x ~l(–~d, –~~) = O on S~in medium(pl, cl). (5)

In the above equations, the currents ~C, ~d and ~d are both

axially directed and transversely dh-ected since a hybrid mode

is propagating in the waveguide.

(wO)eO) (0,0) free spsce
by

(PO9 Eo) cd SC 1- x

s~
(zo,Fio)

cc

nd perfect conductor

Fig. 1. Dielectric loaded waveguide.

Method of moments is used to reduce the (5) into a matrix

equation. Since a hybrid mode is a coupling between the Tillz

and TEZ modes, a total of 2(TZ+ 2m) unknowns are necessary

to analyze the same waveguide supporting a hybrid mode,

since both axially directed and transversely directed electric

and magnetic currents support the hybrid mode. n and m

denote the number of subsections on conductor and dielectric

surfaces, respectively. The expansion functions are given as,

i=n+l

n+2m

i=n+m+l

2n+2m

7.1 = E Ii~i
i=n+’m+l

2n+3m

~dz= E Ii~i

i=2n+2m+l

‘(n+ ’m)

adz = x Iz~i .

i=2n+3m+l

(6)

The weighting functions are given as

Expanding the surface currents Je, ~d, ~d in terms of

expansion functions (6) and testing equations (5) with the set

of weighting functions (7), the electric field integral equations

reduces into the matrix form

[Z][I] = [0] (8)
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Fig. 2. (a) Equivalence for medmm (J. (b) Equivalence fw medium 1.

where

0l+[;.lal[21 = [z~ Z’,E

and [1] is a 2(n + 2m) current vector with the first (n + 27n)

elements representing the current coefficients necessary to

produce the axial component of the electric field and the

next (n + 2m) elements representing the current coefficients

necessary to produce the transverse component of the electric

field.

The sub-matrices [ZTAf] and [ZTE] are (7L+ 2m) x (n+ 2rn)

matrices with elements given in [2]. The sub-matrix [Z{,]

ia a (n + 2m) x (n + 2Tn). The elements of this matrix

Pi(l’- 1~,)

LIii.,1,

5(1- lk-)

L

Zk+lk+l
1~+= ‘2

A

I I * 1’
1~., 1~- t~

Fig. 3 Patching details.

represent the z-component of the electric field produced by

the transverse electric currents (~.l ) flowing on the walls

of the conductors. Applying the equivalence principle to (4)

and using the following expansion and weighting functions

(Fig. 3),

where I’i(l’ – ii–l) =
{

: :I::h;r$-l < “ - ‘i-’ (9)

WA= (5(1– 1~.)AIJk

{

1 1=1~-
where 6(1 – lk- ) = ‘ otherwise (10)

the matrix [Z~c] can be represented in the form

[Z;e]=

where

[Z{l z!, o] [1]

. Pi(/’ – 1,)H[2) ( @; – ~2R) dl’

k=l,2,..., n
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[Zj, Zj, O][q

. Pi(l’ – ti_I)H~2)(@j’– /?2R)dl’

● ~lk MiFF “+”

4jwG3 ,ZJf’+’(’: ;)’(’-’,+)

Pi(l’ – lJH[2)(@;– /?2R) dl’

k=n+l, n+2,..., n+rn

[0 2;2 z:, ] [1]

. Pi(l’ – 1JH{2) (~k; – /!32R) dl’

- Pi(l’ – li)H\2)(~k; – /32R) dl’

k=n+l, n+2,..., n+rn.

. Pi(l’ – /i_m)Hf)(fi-~– /32R) dl’

k=n+l, n+2,.. .,n+7n.
The submatrix [Z&J is also a (n+ 2m) x (n+ 2rn) matrix

that represents the transverse component of the electric field

produced by the axial electric currents (~cz ) flowing on the

surface of the conductors and transverse magnetic currents

(~cl) flowing on the surface of the dielectric. Applying

equivalence principle to (6), the submatrix [Z~m] can be

represented in the form

The submatrix [Z&E] is also a (n+ 2m) x (n+ 2m) matrix

with elements representing the transverse component of the

electric field produced by transverse electric currents (~.l)

flowing on the conductors. This submatrix is of the form

where
where

[Zf[ Zfj o] [q

– 6(1 – kl))I’i(l’)Hj2)(~; – B2R) dl’

– 6(1 – l@’Jl’)Hj2)(/VR) di’

k=l,2,..., n
. P.(1’ – li)H$2) (~~R) dl’

. Pi(l’ – li_wJHj2)(+%:–B2R) dl’

k=l,2,..., n

– 6(1 – zk)p,(z’yfj2)(Jk~ – ,LYR) dl’

– 6(1 – /k))ri(z’)H~2)(fi~–/32R) d’

k=n+l, n+2,..., n+rn
. P.(l’ – ii_@[2)(~k: – @2R) dl’
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Fig. 4. Patching Function.

[0 2[; o] [1]

B2

d=– 12(li+–lt)

– (5(1– lk))rt(z’yi$z) ( J-R) W

k=n+l, n+2,..., +riaia.

The r, (l’)’s are defined as in Fig. 4.

Based on the above equations, the electric field integral

equation can be reduced to a matrix equation at a certain

frequency w and fixed propagation constant /3. This matrix

equation now represents a hybrid mode propagating in the

guiding structure, which can be solved for the unknown

expansion coefficients.

To find out the dispersion curve is to obtain a relation

between propagation constant (~) and angular frequency (u).

The wavenumber k. appears as an argument in the matrix

equation (8). For a non-trivial solution of ~, the moment matrix

[Z] has to be singular [1]. Therefore, we can say

det [Z] = O. (11)

Equation (8) can be written as

[2][1] = ~~,~ [1] (12)

where ~mm is the rninirnurn eigenvalue of the matrix [Z] and
[1] is the corresponding eigenvector. Assuming w is fixed, then

the propagation constant ~ at which ~~,n is the smallest one

gives the relation between P and w. AS the range of /7 is

known (0 < p < k.; k. < p < @ko), the relationship can

be found out by a scanning procedure. The moment matrix

[Z] is complex, the corresponding eigenvalues are complex
also. To find out the w – /3 relation the absolute value of the

eigenvalue is used in the algorithm.

III. ELECTROMAGNETIC FIELD DISTRIBUTIONS

The eigenvector obtained corresponding to the minimum

eigenvalue (,A~in) represents the equivalent current existing on

the surface of the guiding structure. These equivalent current

coefficients I produces exact field inside and on the surface

of the guiding structure. This vector can therefore be used to

calculate the fields, and hence the losses, in the structure.

The power-loss method has been used to calculate attenua-

tion constants in the structure. The assumptions of conducting

walls being perfect conductors and the dielectric medium

being lossless are valid up to microwave frequencies. But

in millimeter wave frequencies, the finite conductivity of

the walls should be taken into account while calculating the

field components. As long as the losses are small at high

frequencies, the power-loss method can be used [6]. In this

approach, it is assumed that the finite conductivity of the walls

has only a small effect on the field configuration within the

structure. The magnetic field tangential to the conducting wall

of infinite conductivity is the same when the conducting wall

is replaced with a conductor of finite conductivity [3]. If the

structure is open, i.e., it is not surrounded by a conducting wall,

the field at the surface of the die~ectric bodies are not zero. Part

of the guided energy lies outside of the cross-section of the

dielectric body. But in the case of closed structure, the whole

guided energy remains within the boundary of the conducting

walls. If the external medium (e.g., air) in the case of open

structure or any other medium except the dielectrics in closed

structures has negligible loss, the power-loss method can be

applied to calculate dielectric losses.

Using the power-loss method [6], the attenuation constant

for conductor losses can be defined as

(13)

whereas the attenuation constant for dielectric losses can be

defined by

(14)

where

J-
PL = :R. lHtan12dl (15)

c

PT=:
//

X(E x E’) .2A (16)
s

PD z ~WCtan6
//

l~lz ds (17)
s~be~

In the above equations, PL is the power lost per unit length

over the conducting bodies, PT is the power transmitted, PD

is the power lost in the dielectric bodies, Htan is the magnetic

field tangential to the conducting surfaces for the lossless

case. R, is the surface resistance of the conducting bodies,

91(X) is the real component of A“, S&.~ is the area covered

by dielectric, S is the complete cross section of the guiding

structure, tan 6 is the loss tangent of the material, e is the

dielectric constant of the dielectric, E is the electric field inside

the structure, and ~“ is the complex conjugate of the magnetic

field existing inside the structure. The contour C, around which

the conducting loss has been calculated are the contour of all

the conducting bodies present in the guiding structure. The

surface resistance R, at any frequency w is given by

r

wpro
R~= —

2U
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where MOis the free space permeability and o is the conduc-

tivity of the conductivity of the conducting bodies.

The term (l? x ~’). z in (16) can be expressed in rectangular

coordinate system, and after little manipulation, (16) can be

written as
. /..

PT=;
Ll

‘Jl(EzH; – EYH; ) ds (18)
s

where x and y subscripts represent corresponding field quan-

tities in $ and y directions, respectively. From Maxwell’s

equations, ~-directed magnetic field Hz and g-directed mag-

netic field Hg can be expressed as

[

1 ~Ez
Hz= –-—

‘JW,u ay
+ jBEY 1

[1 dEz
Hv=- — + jBEz

Jwp 8X 1
(19)

(20)

Replacing (19) and (20) in(18) and with a little algebra we get

The various components of the electric and magnetic fields

produced by a hybrid mode propagating in the guiding struc-

ture can be calculated from the eigenvector [1], corresponding

to the minimum eigenvalue ~~in, via (3), (4), (19), and (20).

To calculate dEz/8x (20), the partial w.r.t. z has taken for

(3) and expanding equivalent electric current (JZ, Jl) and

magnetic current (Lfz ), and making some simple modification,

it becomes

L3E;
—= A+B+C
ax

(22)

where

L
-I*

The subscript i denotes the ith medium, which can be either

conductor or a dielectric. ~~ is the tangential unit vector on

the jth subsection on the surface of conductor or dielectric,

which can be expressed as

~ is defined as ~ = ;(x – x’) +j(y – y’), where 2 and j are

unit vectors along x and y directions, respectively. Here lj is

the jth component of the eigenvector [1]. While calculating

field in the medium air (free space), our field point lies in

the medium (i = O), and according to equivalence principle

(Fig. 2(a)), the fields in that region can be evaluated through

J.,, J~~, IL!Liz, and J~t. So, the subscript j in the summation
should run through 1 to 2n + 2m. But fields in the medium

(i= 1) are evaluated through -J.l only (Fig. 2(b)). So, the j

in this case should run through n + 2m to 2n + 2m. Alj is the

subsection of the conducting or dielectric body along which

integration of kernel is computed. Similarly 8EZ ./8y can be

expressed through Jz, J1, and A/fl and is given as

i3E;
—= D+E+F
ay

where

(23)

L

and

[

E= __
4j D~l { - TH$2)(4G’)

~ J

- JF7#’(G Xm

HJ2w=R)}d”]*

H(2) and H$2) are Hankel functions of 2nd kind of order

1 an~ 2, respectively. ki = w@ is the wave number of

the medium i. w = @ is the characteristic impedance
of medium z. Equation (4) can be rewritten in more compact
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form to give transverse components of electric fields as

[1=G+H–jwpi I+:J –K (25)
z

where

‘= -gd=n~l :w=’’)’~’
.7 J

and

and

‘=$3J’’J$2)(d=’R)dl’
J

and

and

In the above equations, the subscript i denotes the ith

medium. If the fields to be calculated at a point lying

in the medium z = O then by equivalence principle

(Fig. 2(a)), the fields in that region can be evaluated through

J.,, J.1, Jd., Jdt, hfdz, and Jkfdl. Since G depends upon z-
directed electric currents, the variable j in summation should

run through 1 to (n + m). H depends upon ~d~ only. The

variable j in summation runs from (n + m + 1) to (n+ 2m).

Since I and J both depend upon J,l and Jdl only. the

summation variable j goes from (n+ 2m + 1) to (2n + 3m).

In the expression of K variable j in summation goes from

(2n + 3m + 1) to 2(n + 2m), because it only depends on
Md,. But if the field point lies inside the medium (i = 1),

according to equivalence principle (Fig. 2(b)), the fields can

be evaluated through – ~&, ‘it!fd~, – J,~t, and –kfdz. In this
case the summation in G goes from n + 1 to n + m, in H

it goes from n, + m + 1 to n + 2m, in 1 and J it goes from

n+ 2m+ 1 to 2rz+ 3rrL, whereas in K it goes from 272+ 3m + 1

to 2 (n + 2m). Alj is the subsection of the conducting or

dielectric body along which integration of kernel is computed.

The tangential component of the magnetic field on the

surface of the conductor is given by the electric currents [3],

77tan = –R x J (26)

where J is given by the eigenvector and R is the unit outward
normal vector to the surface of the conductor.

Fig. 5. Shielded rmcrostrlp line.

‘~

25

2

P
15 -

k~
I I

10 12 14 16 18 20
freq. (GHZ)

Fig. 6. Dispersion curve of shielded microstrip line.

IV. RESULTS

A. Shielded Microstrip Line

Fig. 5 shows a shielded microstrip line that is made up

of an outer conducting box, an inner dielectric body, and a

conducting strip on top of the dielectric. Since the conductor

fully covers the dielectric and the conducting strip, a wave

propagating in this structure does not radiate any fields into

the space outside the box. A relation between propagation

constant /3 and the free space wavenumber k. can be found

out by solving (8).
At a high frequency of operation, existence of the outer

conducting body produces propagation of higher-order modes.

A total of 130 subsections are used to model the structure

shown in Fig. 5. Twenty four subsections are used to model the

outside conducting box and five to model the inside conducting

strip, whereas 36 subsections are used to model the dielectric.

Altogether, 65 subsections are used for unknowns JCZ, Jdz, and

~dl. Another 65 subsections are used for unknowns Jcl, Jdl,

and Md:. The surface integral formulation is used to find the

/3 – /c. relation for the structure given in Fig. 5. The first four

hybrid modes are given in Fig. 6. The solid lines represent

the computed data using this method, whereas the points with
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Fig. 7. Shielded microstrip line.
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Fig. 8. Conductor losses of shielded microstrip for different linewidth.

boxes and pluses represent the values from [16], [10], which

agree well with our computed data.

Fig. 7 shows the same shielded microstrip line with different

dimensions. Conductor and dielectric losses are calculated for

the structure with different 2w/h ratio and are shown in Fig. 8

and Fig. 9, respectively. The frequency of operation is chosen

to be 1 GHz, and the ~ – k. relationship is found from the

dominant mode characteristics. The conductivity of the strip

and the outer conducting wall is taken to be 1/3 x 108mho-m.

The solid line represents the computed data using our method,

whereas the pointg with boxes represent the values obtained

from [10]. As can be seen from Fig. 11, there is a certain

discrepancy when 2w/h is less than 1.5. The losses in [10]

are dependent on the order of solution chosen. But as the ratio

2w/h increases the losses are slightly dependent on the order
of solution. Since the surface integral formulation does not

depend upon the order of the solution, the result given by this

method is more accurate.

The loss tangent (tan 6) for the dielectric is taken to be
2 x 10–4. The computed data agrees well with the available

data [10]. In this case, the losses given in [10] do not vary

6

5.5

5

ad

x 10-74.5
dB/m

4

3.5

3
o 0.5 1 1.5 2 2.5 3 3.5 4 4.5

2wJd

Fig. 9. Dielectric losses of shielded microstrip for different linewidth.

Fig. 10. Coupled image line.

with the order of solution, which can be attributed for the

better agreement in this case.

B. Coupled Image Lines

Fig. 10 shows a waveguide made up of an outer conductor

and two inner dielectric squares of equal dimension and same

material properties separated by a distance 2 mm.

The surface integral formulation is used to obtain the

propagation curve for the above mentioned structure. A total

of 188 unknowns are used to obtain the /3 – w relation, of

which 94 are used for axial conductor electric surface current

Jcz, axial dielectric electric surface current Jdz, and transverse

dielectric magnetic surface current J&l. The other 94 represent

transverse electric surface current JCz, transverse dielectric

electric surface current JdZ, and axial dielectric magnetic

surface current ~&. The ~ – w relation for first two hybrid

modes are shown in Fig, 11. The solid lines represent the

results found out by this method, whereas the points by boxes

and pluses represent the results from a commercial FEM code

(HFSS). Though there is good agreement for the 2nd mode,

there is slight discrepancy for the first mode.

C. Image Line

Fig. 12 shows an image line that consists of a rectangular

dielectric slab backed by a conducting plane. The image line

analysis done in [6], assumes the conducting plane to be

infinite. Though the above assumption makes the analysis
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Fig. 13. Dispersion curve of an image line

simple, the solution can not be exact when the conducting
plane of finite length. In our example, the conducting plane

has taken to be finite and of length 6a, whereas the dielectric

has the dimension 2a as one of its sides.

The surface integral formulation is used to find the disper-

sion curve for the image line shown in Fig. 13. A total of 120

subsections are used to model the structure. The 20 unknowns

are used for each type of surface currents, which are axial

conductor electric current Jc,, axial dielectric electric current

J~z, transverse dielectric magnetic current JWdl, transverse

conductor electric current J.l (in this case only J.z), transverse

dielectric electric current Jdl, and axial dielectric magnetic

ctJment kf&.
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Fig. 14. Condnctor loss of an image line.
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Fig. 15. Dielectric loss of an image line.

The dispersion curve for the image line for first two hybrid

modes, giving the ratio of propagation constant 6 to the

free space wavenumber kO as a function of normalized guide

dimension B is shown in Fig. 14. The normalized guide

dimension B is given by

B=;~~.

The solid lines represents the results computed by this method

whereas the boxes and pluses represent the result from [6].

The agreement of our result with [6] is good.

The attenuation constants. both for conductor and dielectric
are plotted in Fig. 15, respectively. The attenuation constants

has been calculated for the first mode only. The attenuation

constant for the conductor is given by ctc/Rs to normalized

guide dimension B. The solid line is the result computed by

this method, whereas the points by boxes represent the results

from [6]. The results agree well with the results given by [6].

The loss tangent for the dielectric tan 6 is assumed to be

0.001, which satisfy our criteria of low lossy material so

that power-loss method can be used to calculate ad. Fig. 16

shows attenuation constant for dielectric C+ to normalized

guide dimension B. The results compared with [6] gives good

agreement.
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V. SUMMARY AND CONCLUSION

The power-loss method, coupled with the surface integral

formulation, has been used to compute attenuation constant

for both conductor and dielectric losses for hybrid modes in

open and closed structures. A simple point matching testing

procedure with pulse expansion functions has been chosen to

transform the integral equation into a matrix one. After getting

the relation between the propagation constant and frequency,

the fields inside or on the surface of the conductors are

calculated. Using the field quantities, the losses have been

found out. The losses calculated are valid for hybrid modes.

The computed results show good agreement with available

results.

The surface integral method did not produce any spurious

modes for the region O < /3 < /c.. But the presence of spurious

modes is observed in the region k. < @ < k. ~. These

spurious modes can be identified looking at the eigenvector

corresponding to the minimum eigenvalue. A mode can be

identified as spurious using two criteria described in [2].

It is also noticed that the occurrence of spurious modes is

prominent when the dielectric used in the analysis is thin

(example A).

The surface integral method along with power-loss method

is a very useful technique that can be used for treating complex

structures to compute conducting and dielectric losses.
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